
XAPP593 (v1.0) September 16, 2011 www.xilinx.com 1

© Copyright 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of
their respective owners.

Summary This application note describes the implementation of a DisplayPort™ sink core and policy
maker reference design targeted for the Spartan®-6 FPGA Consumer Video Kit (CVK) [Ref 1].

Introduction The purpose of this reference design is to implement the DisplayPort sink design and
associated software policy maker in a MicroBlaze™ processor. The reference design is a
loop-through system that receives video from a DisplayPort source via the receive link, buffers
the video data, and retransmits it over the DisplayPort transmit link.

The policy maker performs several tasks such as initialization of GTP transceiver links, probing
of registers, and other features useful for bring-up and use of the core. The application controls
both the sink and source of the reference design and communicates with the monitor (sink)
connected on the transmit port of the reference design using the auxiliary channel.

The reference design included with this application note encompasses the DisplayPort source
and sink cores generated from the Xilinx® CORE Generator™ tool, policy maker, and a frame
buffer logic using external memory. This application note focuses on the reference hardware
and the policy maker implementation. The block diagram of the test system is shown in
Figure 1.

This application note allows the user to connect a graphics processing unit (GPU) to the Xilinx
DisplayPort sink core, and loops the video to a monitor using the DisplayPort source core.

 Application Note: Spartan-6 FPGAs

XAPP593 (v1.0) September 16, 2011

DisplayPort Sink Reference Design
Authors: Arun Ananthapadmanaban and Vamsi Krishna

X-Ref Target - Figure 1

Figure 1: System Block Diagram

DisplayPort
Source – GPU

(TX)

Main

Aux

AXI IF AXI IF

Xilinx
DisplayPort
Sink Core

Xilinx
DisplayPort

Source

DisplayPort
Monitor

(RX)

Frame
Buffer

Policy Maker on MicroBlaze Processor

X593_01_090611

Main

Aux

http://www.xilinx.com

Hardware Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 2

Hardware
Implementation

The system consists of DisplayPort sink and source cores, a video timing generator, and a
minimal MicroBlaze processor to implement the policy maker. The policy maker is implemented
in stand-alone C code running on the MicroBlaze processor. The block diagram for the
MicroBlaze processor system is shown in Figure 2.

The source and sink cores are generated from the CORE Generator tool. The policy maker
design includes a MicroBlaze processor, an AXI Interconnect, an AXI timer, a MicroBlaze
Debug Module (MDM) debug core, an AXI UART, and one instantiation of the AXI2APB bridge.
The control connection to the DisplayPort IP is done through an AXI4-Lite interface through
slave extension modules.

The communications interface between the MicroBlaze processor and the DisplayPort cores is
an AXI4-Lite interface, a subset of the ARM® AMBA® 4 specification [Ref 2].

The sink core is the master of the system in the sense that the link configuration and video rates
are defined by what the sink core receives. The data from the sink core is copied to external
DRAM via the frame buffer and Memory Interface Generator (MIG) logic. The control path
functions are handled by the MicroBlaze policy maker, whose main function is to keep track of
the sink core status and configure the source core with an identical configuration. The policy
maker functions also include programming the video timing generator with the received video
attributes and synthesis of a video clock for the source core.

The video timing is generated by the video timing generator while the data is read out of the
stored frames in the external DRAM to create a video loop-through system.

Clocking

The TED CVK 1.0 consists of these clocks:

• Input clocks:

• GTP reference clocks of 135 MHz for high bit rate (HBR) and 81 MHz for reduced bit
rate (RBR)

• System clock of 200 MHz

• Derived clocks:

• AXI and MicroBlaze processor clock at 40 MHz derived from 200 MHz reference clock

• RX video clock at 100 MHz derived from 200 MHz reference clock (DMA mode)

X-Ref Target - Figure 2

Figure 2: EDK System Block Diagram

Sink Policy Maker

ILMB DLMB

AXI
Timer

AXI4

AXI4-Lite

AXI
UART
Lite

AXI Ext
Slave

Connector

AXI4-Lite

AXI2APB
Bridge

AXI4-Lite AXI Ext
Slave

Connector

AXI4-Lite

AXI4-Lite

Video
Timing

Generator

DisplayPort
Source

DisplayPort
Sink

Frame
Buffer

MIG

MicroBlaze Processor
32 KB LMB Block RAM

AXI
Interconnect

RESET

X593_02_090711

AXI4-Lite

AXI4-Lite

APB Bus

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 3

• DRAM clock at 200 MHz derived from 200 MHz reference clock

• TX video clock synthesized using DCM_CLKGEN from link clock

Frame Buffer

The frame buffer block interfaces to the sink and source video interface, and uses a MIG core
to connect to the external DRAM memory. The MIG core is generated from the
CORE Generator tool. For details, refer to the Spartan-6 FPGA Memory Controller User Guide
[Ref 3]. The frame buffer uses the external DRAM to buffer four video frames and handles a
mismatch in the sink and source video data rate by manipulating the frame pointer of the
source video data to implement a circular buffer. The frame buffer:

• Maintains four frames of data in external memory.

• Packs pixel data on each pixel interface to optimize DRAM utilization. This packing is
based on the video bits per color (BPC) configuration.

• For 6, 8, and 10 bits, two pixels are packed into one 64-bit word of the memory. Thus,
the memory QWORD count is half of the horizontal resolution (HRES).

• For 12 and 16 bits, one pixel and one component of the next pixel is packed into one
64-bit word of the memory. Thus, the memory QWORD count is 3/4 of the HRES.

• Handles frame synchronization between the sink and source cores.

• Frame sync logic adjusts TX frame pointers to adjust rate mismatches between the
sink and source cores. If the sink core video rate is faster than the source core, the
logic skips a frame while reading out. If the sink core video rate is slower than the
source core, the logic repeats a frame while reading out.

Frame CRC

The system also has a CRC8 engine on the output of the sink core (pixel data) and another at
the input of the source core. These cyclic redundancy check (CRC) engines compute frame
CRC per color component on a per-pixel interface basis. The computed CRC values can be
used to debug any pixel data mismatch. Matching CRC computed across the frame buffer, i.e.,
on the sink output and source input, guarantees data integrity of the frame buffer logic and
external memory.

Table 22 and Table 23 list reference CRC values for link layer compliance (LLC) patterns (LLC
Ramp) at various resolutions.

Software
Implementation

Software Flow
The state diagram in Figure 3 shows the basic structure of the software. This section describes
the startup procedure and terminal options in more detail.

The addresses of these DisplayPort cores are referenced multiple times throughout the
software as XILINX_DISPLAYPORT_TX_BASE_ADDRESS and
XILINX_DISPLAYPORT_RX_BASE_ADDRESS, which are in turn referenced from
sys_defs.h.

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 4

Reset and Init

When the bitstream is downloaded to the FPGA, the Microblaze processor begins executing.
The MicroBlaze processor first initializes its peripherals. It runs a self-test on the timer, then
checks the DisplayPort cores in the system to ensure that both a DisplayPort source and sink
core are present. The DisplayPort core type is read from address offset 0xFC of the DisplayPort
sink and source cores.

For the physical layer (PHY) module:

1. Put the PHY into reset.

2. Wait for the PHY to be ready.

3. Bring the PHY out of reset.

For the sink core:

1. Disable the receiver.

2. Set the clock divider.

3. Set the minimum voltage swing required for training (based on the GTP PHY).

4. Enable the receiver.

5. Unmask all interrupts.

For the source core:

1. Disable the transmitter.

2. Set the clock divider.

X-Ref Target - Figure 3

Figure 3: Software Flow Diagram

Reset and
Init

Enable UART, Timer,
and Init DP

Sink and Source

Display
User

Console
(Help)

Monitor
Sink
State
(ISR)

“c” or
Auto Detect

Config
TX and
Render
Video

Check Sink Training
State and Configure

Source if Sink Trained

X593_03_090611

- -
- DisplayPort Sink Policy Maker
- -
; - Read the DPCD & EDID from the DisplayPort monitor on
Source port
a - Enable/Disable auto detection - Train Source based on
Sink Status and Render video
c - Configure Source based on Sink status and Render video
d - Display MSA for TX & RX
h - Display this help menu
m - Toggle the main stream video of Source core on/off
s - Display training configuration of TX & RX
x - Exit the application

A - Read from SRC registers
B - Read from Sink registers
C - Read from Video Timing Generator registers
D - Write to SRC registers
E - Write to Sink registers
F - Write to Video Timing Generator registers
R - Read AUX Register from Monitor connected to the Source
W - Write AUX Register to Monitor connected to the Source

Z - Display Frame CRC computed at the output of Sink & input
of Source
-

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 5

3. Set the DisplayPort clock speed.

4. Enable the transmitter.

5. Unmask all interrupts.

At this point, the init_platform function in main.c has completed. Next, the xilcccAppInit
(xil_ccc_app.c) function is called from main.c. Inside xilcccAppInit, the
dplpmInitLinkPolicyMaker (displayport_lpm.c) function is called. The
dplpmInitLinkPolicyMaker function is responsible for setting the hardware capabilities of the
system. These settings control the start-up functionality of the transmitter before the terminal is
active.

Display User Console

The user console is displayed after the system is initialized. However, the DisplayPort link is not
yet active. Because the sink core is the master, the link becomes active only if the sink is
trained. The software comes up with auto detection mode disabled, i.e., the system does not
expect a monitor connected to the source port (Table 1). The functionality of each terminal
command is described in the Command Processor, page 6 section.

Monitor Sink State, Configure, and Render Video (Auto Detect Mode)

This part of the code works on polling the interrupt status register of the sink core. The basic
functions are based on the various interrupts as shown in Figure 4, and are implemented as a
simple state machine in the dpSinkISR() routine. Figure 4 shows the switching of the routine
based on interrupt status.

Table 1: Terminal Display for Command Processor

 Displayed on Terminal

- -
- DisplayPort Sink Policy Maker -
- -
; - Read the DPCD & EDID from the DisplayPort monitor on Source port
a - Enable/Disable auto detection - Train Source based on Sink Status and Render video
c - Configure Source based on Sink status and Render video
d - Display MSA for TX & RX
h - Display this help menu
m - Toggle the main stream video of Source core on/off
s - Display training configuration of TX & RX
x - Exit the application

A - Read from SRC registers
B - Read from Sink registers
C - Read from Video Timing Generator registers
D - Write to SRC registers
E - Write to Sink registers
F - Write to Video Timing Generator registers
R - Read AUX Register from Monitor connected to the Source
W - Write AUX Register to Monitor connected to the Source

Z - Display Frame CRC computed at the output of Sink & input of Source
- -

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 6

Types of interrupts include:

• No video interrupt: This interrupt indicates that the sink has detected that the main link has
no video information. The routine disables the timing generator and frame buffer on this
interrupt.

• Power mode interrupt: Power-down/power-up mode information is displayed. The PHY is
put into power down or brought up by the link layer hardware, and there is no specific
software action required, except that the software state machine is moved to not trained
and no video when powered down.

• Video interrupt: When auto detect mode is enabled, the sink interrupt handler enters the
vsync wait state on seeing a video interrupt. In this state, the routine waits for a
pre-determined number of vertical blanking interrupts before moving to an active video
state.

Command Processor

The command processor receives input from the terminal and executes the desired transaction
as described in this section.

; — Read the DPCD and EDID from the DisplayPort Monitor on Source Port

This function reads the DisplayPort configuration data (DPCD) and extended display
identification data (EDID) from the sink device through the AUX channel and displays relevant
information. Table 2 is an example of what would be displayed when the command is executed.
The command also dumps raw EDID data on the terminal. This EDID data can be used for
advanced debug.

X-Ref Target - Figure 4

Figure 4: Sink Interrupt Handler

Reset Frame Buffer
and Video Domain,

and Clear MSA

Training Lost or
No Video or

Video Mode Change or
Power Mode Change

Video Interrupt

Vsync_count >= 20

Vsync_count < 20

IDLE
State0
Initial
State

Configure TX and
Render Video

VSYNC
WAIT
State2

Active
Video
State1

X593_04_072211

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 7

Table 3 provides descriptions of some of the DPCD capabilities.

Table 2: Terminal Display for DPCD and EDID Command

Displayed on Terminal

Dump DPCD
DisplayPort Configuration Data:
 DPCD Revision : 1.1
 Max Link Rate : 2.7 Gbps
 Max Lane Count : 4
 Enhanced Framing : Yes
 Max Downspread : 0.5%
 Require AUX Handshake : Yes
 Number of RX Ports : 2
 Main Link ANSI 8B/10B : No
 Downstream Port Count : 0
 Format Conversion Support : No
 OUI Support : No
 Receiver Port 0:
 Has EDID : No
 Uses Previous Port : No
 Buffer Size : 0

========================== Reading EDID... Start =========================
EDID[000 to 016] 00, FF, FF, FF, FF, FF, FF, 00, 10, AC, 4D, 40, 49, 45, 39, 30
EDID[016 to 032] 0D, 14, 01, 04, A5, 2F, 1E, 78, 3E, EE, 95, A3, 54, 4C, 99, 26
EDID[032 to 048] 0F, 50, 54, A5, 4B, 00, 71, 4F, 81, 80, B3, 00, 01, 01, 01, 01
EDID[048 to 064] 01, 01, 01, 01, 01, 01, 7C, 2E, 90, A0, 60, 1A, 1E, 40, 30, 20
EDID[064 to 080] 36, 00, DA, 28, 11, 00, 00, 1A, 00, 00, 00, FF, 00, 52, 38, 38
EDID[080 to 096] 30, 4B, 30, 33, 4D, 30, 39, 45, 49, 0A, 00, 00, 00, FC, 00, 44
EDID[096 to 112] 45, 4C, 4C, 20, 50, 32, 32, 31, 30, 0A, 20, 20, 00, 00, 00, FD
EDID[112 to 128] 00, 38, 4B, 1E, 53, 10, 00, 0A, 20, 20, 20, 20, 20, 20, 00, 99
========================== Reading EDID...Done ==========================

Table 3: DPCD Status Description

Displayed on Terminal Description

DisplayPort Configuration Data

DPCD Revision : 1.1 The revision number of the DisplayPort sink.

Max Link Rate : 2.7 Gbps The maximum capable link rate of the sink device
(2.7 Gb/s or 1.62 Gb/s).

Max Lane Count : 4 Lane count can be 1, 2, or 4.

Enhanced Framing : Yes Framing mode support.

Max Downspread : 0.5% Spread spectrum support.

Require AUX Handshake : Yes For full details, refer to the VESA DisplayPort Standard
[Ref 4].

Number of RX Ports : 1

Main Link ANSI 8B/10B : No

Downstream Port Count : 0

Format Conversion Support : No

OUI Support : No

Receiver Port 0:

Has EDID : No

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 8

a — Enable/Disable Auto Detection - Train Source based on Sink Status and Render
Video

This command enables or disables the ability to auto detect a monitor connected on the source
core. By default, auto detection is disabled. When auto detection mode is enabled, the software
that tracks the status in the sink core auto configures the source core with the link configuration
and video configuration (see Table 4).

c — Configure Source based on Sink Status and Render Video

This command checks the sink training and video status and configures the source core to
render video. This is a manual mode of the a command. This command displays video-related
information on the terminal as shown in Table 5.

d — Display MSA for RX and TX

This command displays the main stream attribute (MSA) values for the DisplayPort source
LogiCORE IP and the video pattern generator settings as described in Table 6 and Table 7.

Uses Previous Port : No

Buffer Size : 0

Table 3: DPCD Status Description (Cont’d)

Displayed on Terminal Description

Table 4: Terminal Display on Auto Detect Mode

Displayed on Terminal When Video Mode is Changed and Auto Detect is Enabled

Sink :: Detected video mode change ..Entering VSYNC wait state
= = = = = = = = = = TX set to RX video parameters = = = = = = = = = =

= = = = = = = = = = = = Video Clock Synthesis = = = = = = = = = = = =
Required Vid_freq = 81000, Computed Vid_freq = 81000, Err = 0, Ref_freq
= 81000 M = 257 D = 257

= = = = = = = = = = = = Source TU management cfg = = = = = = = = = = =
link_freq = 162, lanes = 4, link bandwidth = 648000 KBps
vid_clk = 162000, hres = 1600, vres = 1200, bpc = 8, video bandwidth req
= 486000 KBps
tu_size = 64, avg_bytes_per_tu = 48000, frac = 0, min_bytes_per_tu = 48

= = = = = = = = = = = = Render Video = = = = = = = = = = = = = =

Table 5: Terminal Display on Manual Configuration of Source - Monitor

Displayed on the Terminal

= = = = = = = = = = TX set to RX video parameters = = = = = = = = = =

= = = = = = = = = = = = Video Clock Synthesis = = = = = = = = = = = =
Required Vid_freq = 65001, Computed Vid_freq = 65000, Err = 1, Ref_freq = 81000 M = 65 D = 81

= = = = = = = = = = = = Source TU management cfg = = = = = = = = = = =
link_freq = 162, lanes = 4, link bandwidth = 648000 KBps
vid_clk = 65001, hres = 1024, vres = 768, bpc = 8, video bandwidth req = 195003 KBps
tu_size = 64, avg_bytes_per_tu = 19259, frac = 259, min_bytes_per_tu = 19

= = = = = = = = = = = = Render Video = = = = = = = = = = = =

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 9

Table 6: Terminal Display for Display MSA Command

Displayed on Terminal

SINK MSA Received Values
 HRES : 1024
 HPOL : 1
 HSWIDTH : 136
 HTOTAL : 1344
 VHEIGHT : 768
 VSPOL : 1
 VSWIDTH : 6
 VTOTAL : 806
 MISC0 : 0020
 MVID : 13146
 NVID : 32768
 VBID : 0
 Main Stream Attributes TX
 Clocks, H Total : 1344
 Clocks, V Total : 806
 Polarity (V / H) : 3
 HSync Width : 136
 VSync Width : 6
 Horz Resolution : 1024
 Vert Resolution : 768
 Horz Start : 296
 Vert Start : 35
 Misc0 : 0x00000021
 Misc1 : 0x00000000
 User Pixel Width : 1
 M Vid : 13146
 N Vid : 32768
 Transfer Unit Size : 64
 User Data Count : 1535
 Video Timing Generator config
 VPOL : 1
 HPOL : 1
 DEPOL : 0
 VSWIDTH : 6
 VB : 29
 VF : 3
 VRES : 768
 HSWIDTH : 136
 HB : 160
 HF : 24
 HRES : 1024

Table 7: MSA Command Description

Displayed on Terminal Description

Main Stream Attributes RX (SINK MSA Received Values)

HRES : 1920 Active video horizontal resolution.

HPOL : 0 Polarity of VSYNC and HSYNC, 1 = High, 0 = Low.

HSWIDTH : 44 Number of clock cycles HSYNC is asserted.

HTOTAL : 2200 Total number of clock cycles for front porch + HSYNC + back porch +
active video.

VHEIGHT : 1080 Active video vertical resolution (line count).

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 10

VSPOL : 0 Polarity of VSYNC.

VSWIDTH : 5 Number of HSYNCs that the VSYNC is asserted.

VTOTAL : 1125 Number of HSYNCs of the frame including blanking times.

MISC0 : 0x0020 Miscellaneous 0 register.

MVID : 30038 PLL multiplier for stream clock recovery.

NVID : 32768 PLL divider for stream clock recovery.

Main Stream Attributes TX (Source MSA Transmitted Values)

Clocks, H Total : 2200 Total number of clock cycles for horizontal front porch + HSYNC +
back porch + active video.

Clocks, V Total : 1125 Total number of clock cycles for vertical front porch + VSYNC + back
porch + active video.

Polarity (V / H) : 0 Polarity of VSYNC and HSYNC, 1 = High, 0 = Low.

HSync Width : 44 Number of clock cycles HSYNC is asserted.

VSync Width : 5 Number of HSYNCs that the VSYNC is asserted.

Horz Resolution : 1920 Active video horizontal resolution.

Vert Resolution : 1080 Active video vertical resolution (line count).

Horz Start : 192 Number of clocks between start of HSYNC and start of active video.
The front porch is determined by this number.
Front porch = H Total – Horz Resolution – Horz Start

Vert Start : 41 Number of clocks between start of VSYNC and start of active video.
The front porch is determined by this number.
Front porch = V Total – Vert Resolution – Vert Start

Misc0 : 0x0021 Miscellaneous 0 register from DisplayPort specification.

Misc1 : 0x0000 Miscellaneous 1 register from DisplayPort specification.

User Pixel Width : 2 Refer to LogiCORE IP DisplayPort v2.3 User Guide [Ref 6] for options
and details.

M Vid : 30038 PLL multiplier for stream clock recovery.

N Vid : 32768 PLL divider for stream clock recovery.

Transfer Unit Size : 64 TRANSFER_UNIT_SIZE sets the size of a transfer unit in the
transmitter framing logic. This number should be in the range of 32 to
64 and is set to a fixed value that depends on the inbound video mode.

User Data Count : 2879 This register is used to translate the number of pixels per line to the
native internal 16-bit datapath. (HRES x bits per pixel / 16) – 1.

Video Timing Generator Configuration (Note: This is dual pixel mode.)

VPOL : 0 VSYNC polarity for the pattern generator.

HPOL : 0 HSYNC polarity for the pattern generator.

DEPOL : 0 Data enable polarity for the pattern generator.

VSWIDTH : 5 VSYNC width.

VB : 36 Vertical back porch.

VF : 4 Vertical front porch.

VRES : 1080 Vertical resolution.

Table 7: MSA Command Description (Cont’d)

Displayed on Terminal Description

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 11

h - Display this help menu

This command displays the help menu, as shown in Table 5, page 8.

m - Toggle the main stream video of Source core on/off

This command toggles the main link on or off each time m is pressed.

s — Display Training Configuration of TX & RX

This command displays the DisplayPort sink training information and configuration data of the
DisplayPort monitor connected to the source port Table 8.

Table 9 provides detailed descriptions of the training configuration registers of the TX and RX.

HSWIDTH : 22 HSYNC width.

HB : 74 Horizontal back porch.

HF : 44 Horizontal front porch.

HRES : 960 Horizontal resolution.

Table 7: MSA Command Description (Cont’d)

Displayed on Terminal Description

Table 8: Terminal Display for DPCD Status Command

Displayed on Terminal

[SINK] Training Status
Link BW Set : 0x06
Lane Count Set : 0x04
DPCD_LANE01 : 0x77
DPCD_LANE23 : 0x77

[SOURCE] Monitor Training Status:
Lane 0/1 Status : 0x77
Lane 2/3 Status : 0x77
Lane Align Status : 0x01
Sink Status : 0x01
Adjustment Request 0/1 : 0x00
Adjustment Request 2/3 : 0x00

[SOURCE] Training Config:
(0x0100) Link Bandwidth Setup : 0x06
(0x0101) Lane Count Set : 0x84
(0x0102) Training Pattern Set : 0x00
(0x0103) Training Lane 0 Set : 0x00
(0x0104) Training Lane 1 Set : 0x00
(0x0105) Training Lane 2 Set : 0x00
(0x0106) Training Lane 3 Set : 0x00
(0x0107) Downspread Ctrl : 0x00

Table 9: Sink and Source Status Command Description

Displayed on Terminal Description

[SINK] Training Status (Sink Core Status)

Link BW Set : 0x06 LINK_BW_SET: Main link bandwidth
0xA = HBR 2.7G
0x6 = RBR 1.62G

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 12

Lane Count Set : 0x04 LANE_COUNT_SET: Lane count

DPCD_LANE01 : 0x77 LANE0_1_STATUS: Lane0 and Lane1 status

DPCD_LANE23 : 0x77 LANE2_3_STATUS: Lane2 and Lane3 status

[SOURCE] Training Status (Monitor Connected to Source Port)

Lane 0/1 Status : 0x77 LANE0_1_STATUS: Lane0 and Lane1 status
Bit 0 = LANE0_CR_DONE
Bit 1 = LANE0_CHANNEL_EQ_DONE
Bit 2 = LANE0_SYMBOL_LOCKED
Bit 3 = RESERVED. Read 0.
Bit 4 = LANE1_CR_DONE
Bit 5 = LANE1_CHANNEL_EQ_DONE
Bit 6 = LANE1_SYMBOL_LOCKED
Bit 7 = RESERVED. Read 0.

Lane 2/3 Status : 0x77 LANE2_3_STATUS
(Bit definition identical to that of LANE0_1_STATUS)

Lane Align Status : 0x81 LANE_ALIGN__STATUS_UPDATED
Bit 0 = INTERLANE_ALIGN_DONE
Bits 5:1 = RESERVED. Read all 0s.
Bit 6 = DOWNSTREAM_PORT_STATUS_CHANGED
Bit 6 is set when any of the downstream ports has changed status.
Bit 7 = LINK_STATUS_UPDATED
Link status and adjust request updated since the last read. Bit 7 is set
when updated and cleared after read.

Sink Status : 0x00 SINK_STATUS
Bit 0 = RECEIVE_PORT_0_STATUS
0 = SINK out of synchronization
1 = SINK in synchronization

Bit 1 = RECEIVE_PORT_1_STATUS
0 = SINK out of synchronization
1 = SINK in synchronization

These status bits are set only when the sink device determines that
the received streams are properly regenerated and within the
supported stream format range.
Bits 7:2 = RESERVED. Read all 0s.

Table 9: Sink and Source Status Command Description (Cont’d)

Displayed on Terminal Description

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 13

Adjustment Request 0/1 : 0x88 ADJUST_REQUEST_LANE0_1: Voltage swing and equalization
setting adjust request for Lane0 and Lane1.
Bits 1:0 = VOLTAGE_SWING_LANE0
00 = Level 0
01 = Level 1
10 = Level 2
11 = Level 3

Bits 3:2 = PRE-EMPHASIS_LANE0
00 = Level 0
01 = Level 1
10 = Level 2
11 = Level 3

Bits 5:4 = VOLTAGE_SWING_LANE1 (same as Lane0)
Bits 7:6 = PRE-EMPHASIS_LANE1 (same as Lane1)

Adjustment Request 2/3 : 0x88 ADJUST_REQUEST_LANE2_3
(Bit definitions as in ADJUST_REQUEST_LANE0_1)

[SOURCE] Training Config: (Source Core)

(0x0100) Link Bandwidth
Setup

: 0x06 LINK_BW_SET: Main link bandwidth
0xA = HBR 2.7G
0x6 = RBR 1.62G

(0x0101) Lane Count Set : 0x84 LANE_COUNT_SET: Main link lane count = Value
Bits 4:0 = LANE_COUNT_SET

1h = One lane
2h = Two lanes
4h = Four lanes

For DPCD Ver.1.0:
Bits 7:5 = RESERVED. Read all 0s.
For DPCD Ver.1.1:
Bits 6:5 = RESERVED. Read all 0s.
Bit 7 = ENHANCED_FRAME_EN
0 = Enhanced framing symbol sequence is not enabled.
1 = Enhanced framing symbol sequence for BS, SR, CPBS, and

CPSR is enabled.

Table 9: Sink and Source Status Command Description (Cont’d)

Displayed on Terminal Description

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 14

(0x0102) Training Pattern
Set

: 0x00 TRAINING_PATTERN_SET
Bits 1:0 = TRAINING_PATTERN_SET: Link training pattern setting
00 = Training not in progress (or disabled)
01 = Training pattern 1
10 = Training pattern 2
11 = RESERVED

Bits 3:2 = LINK_QUAL_PATTERN_SET
00 = Link quality test pattern not transmitted
01 = D10.2 test pattern (unscrambled) transmitted
10 = Symbol error rate measurement pattern transmitted
11 = PRBS7 transmitted

Bit 4 = RECOVERED_CLOCK_OUT_EN
Bit 5 = SCRAMBLING_DISABLE
0 = DisplayPort transmitter scrambles data symbols before

transmission
1 = DisplayPort transmitter disables scrambler and transmits all

symbols without scrambling
For DPCD Version 1.0:
Bits 7:6 = Reserved, read as zeros.
For DPCD version 1.1
Bits 7:6 = SYMBOL ERROR COUNT SEL
00 = Disparity error and illegal symbol error
01 = Disparity error
10 = Illegal symbol error
11 = Reserved

(0x0103) Training Lane 0 Set : 0x10 TRAINING_LANE0_SET: Link Training Control_Lane0
Bits 1:0 = VOLTAGE SWING SET
00 = Training with voltage swing level 0
01 = Training with voltage swing level 1
10 = Training with voltage swing level 2
11 = Training with voltage swing level 3

Bit 2 = MAX_SWING_REACHED
Set to 1 when the maximum driven current setting is reached.
Bit 4:3 = PRE-EMPHASIS_SET
00 = Training without pre-emphasis
01 = Training with pre-emphasis level 1
10 = Training with pre-emphasis level 2
11 = Training with pre-emphasis level 3

Bit 5 = MAX_PRE-EMPHASIS_REACHED
Set to 1 when the maximum drive current setting is reached.

(0x0104) Training Lane 1 Set : 0x10 TRAINING_LANE1_SET
(Bit definition is identical to that of TRAINING_LANE0_SET.)

(0x0105) Training Lane 2 Set : 0x10 TRAINING_LANE2_SET
(Bit definition is identical to that of TRAINING_LANE0_SET.)

Table 9: Sink and Source Status Command Description (Cont’d)

Displayed on Terminal Description

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 15

x — Exit the Application

This command exits the application loop, and returns to main(). The processor remains in an
infinite loop in main() and does nothing more at this point.

A — Read from SRC Registers

This command allows direct read access to the registers inside the DisplayPort source
LogiCORE IP (Table 10). See the Source Core Architecture chapter of LogiCORE IP
DisplayPort v2.3 User Guide [Ref 6] for a description of each register.

B — Read from Sink Registers

This command allows direct read access to the registers inside the DisplayPort sink LogiCORE
IP (Table 11). A description of each register appears in the Sink Configuration Space chapter of
LogiCORE IP DisplayPort v2.3 User Guide [Ref 6].

C — Read from Video Timing Generator Registers

This command allows direct read access to the registers inside the timing generator (Table 12).
Refer to Table 19 for a description of each of the registers. Frame buffer control registers are
also part of this register map.

D — Write to SRC Registers

This command allows direct write access to the registers inside the DisplayPort source
LogiCORE IP (Table 13).

(0x0106) Training Lane 3 Set : 0x10 TRAINING_LANE3_SET
(Bit definition is identical to that of TRAINING_LANE0_SET.)

(0x0107) Downspread Ctrl : 0x00 DOWNSPREAD_CTRL: Down-spreading control
Bit 3:0 = RESERVED. Read all 0s.
Bits 4 = SPREAD_AMP
Spreading amplitude
0 = No downspread
1 = Equal to or less than 0.5% down spread

Table 9: Sink and Source Status Command Description (Cont’d)

Displayed on Terminal Description

Table 10: Terminal Display for Read Source Register Command

Displayed on the Terminal

Enter 4 hex characters: Source Read address 0x0000

Source Read Addr C3A00000 Read Data: 0006

Table 11: Terminal Display for Read Sink Register Command

Displayed on the Terminal

Enter 4 hex characters: Sink Read address 0x000c

Sink Read Addr C4A0000C Read Data: 0003

Table 12: Terminal Display for Read Video Timing Generator Register Command

Displayed on the Terminal

Enter 4 hex characters: Video Timing Gen Read address 0x0100

Video Timing Gen Read Addr CCA00100 Read Data: 0981

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 16

E — Write to Sink Registers

This command allows direct write access to the registers inside the DisplayPort sink LogiCORE
IP (Table 14).

F — Write to Video Timing Generator Registers

This command allows direct write access to the registers inside the timing generator (Table 15).

R — Read AUX Register from Monitor Connected to the Source

This command allows read access to the DisplayPort configuration data register space of the
DisplayPort monitor connected to the source using the AUX channel (Table 16). Detailed
descriptions of the registers can be found in the DisplayPort specification in the address
mapping for the DPCD table [Ref 4].

W — Write AUX Register to Monitor Connected to the Source

This command allows write access to the DisplayPort configuration data register space of the
DisplayPort monitor, connected to the source using the AUX channel (Table 17). Detailed
descriptions of the registers can be found in the DisplayPort specification in the address
mapping for the DPCD table [Ref 4].

Table 13: Terminal Display For Write to Source Register Command

Displayed on the Terminal

Enter 4 hex characters: Source Write address 0x0000

Enter 4 hex characters: Source Write data 0x0006

Source Write Addr C3A00000 Write Data: 0006

Table 14: Terminal Display for Write to Sink Register Command

Displayed on the Terminal

Enter 4 hex characters: Sink Write address 0x000c

Enter 4 hex characters: Sink Write data 0x0003

Sink Write Addr C4A0000C Write Data: 0003

Table 15: Terminal Display for Write to Video Timing Generator Register Command

Displayed on the Terminal

Enter 4 hex characters: Video Timing Gen Write address 0x0100

Enter 4 hex characters: Video Timing Gen Write Data 0x0981

Video Timing Gen Write Addr CCA00100 Write Data: 0981

Table 16: Terminal Display for Aux Read from Monitor on Source Command

Displayed on the Terminal

Enter 4 hex characters: Aux Read Address 0x0100

Aux Read Addr 0100, Read Data: 06

Table 17: Terminal Display for Aux Write to Monitor on Source Command

Displayed on the Terminal

Enter 4 hex characters: Aux Write Address 0x0100

Enter 2 hex characters: Aux Write Data 0x06

Aux Write Addr 0100 Write Data: 06

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 17

Z — Display Frame CRC Computed at the Output of Sink and Input of Source

This command reads out the frame CRC8 computed at the video interfaces of the DisplayPort
sink and source cores (Table 18).

Video Timing Generator and Frame Buffer Control Registers

The video timing generator and frame buffer control registers map is shown in Table 19.

Table 18: Terminal Display and Description for Display Frame CRC Command

Displayed on Terminal Description

HRES 1024, VRES 768, MISCO 20, ERROR 0

CRC values Pixel 0 interface

RX Rcrc 0x54DF, Gcrc 0xBE68 Bcrc 0xADDA

TX Rcrc 0x54DF, Gcrc 0xBE68 Bcrc 0xADDA

CRC values Pixel 1 interface

RX Rcrc 0x783D, Gcrc 0xDCCE Bcrc 0x3F82

TX Rcrc 0x5387, Gcrc 0x71B3 Bcrc 0x8E36

RX CRC corresponds to the frame CRC values seen on sink
video outputs.
TX CRC corresponds to the frame CRC values seen on source
video inputs.
CRC engines are available on a per pixel interface basis.

Table 19: Video Timing Generator Registers

Register
Address Read/Write Description

0x000 R/W Bit 0 = Enable video output
Bit 1 = SW reset of the pattern generator

0x004 R/W Bit 0 = VSYNC polarity

0x008 R/W Bit 0 = HSYNC polarity

0x00C R/W Bit 0 = DE polarity

0x010 R/W Bits 8:0 = VSYNC width

0x014 R/W Bits 8:0 = Vertical back porch

0x018 R/W Bits 8:0 = Vertical front porch

0x01C R/W Bits 10:0 = Vertical resolution

0x020 R/W Bits 8:0 = HSYNC width

0x024 R/W Bits 8:0 = Horizontal back porch

0x028 R/W Bits 8:0 = Horizontal front porch

0x02C R/W Bits 10:0 = Horizontal resolution

0x100 R/W Frame buffer and timing control register.
Bit 0 = Enable frame buffer
Bit 1 = RX video reset
Bit 2 = DRAM reset
Bit 8 = Enable frame synchronization logic. This logic matches frame rates (due to video
clock ppm variations) between the sink and source cores by adjusting the frame start
pointer of the source.(1)

Bit 9 = When set to 1, this register forces frame buffer logic to start buffering unconditionally
Bit 10 = When set to 1, this register configures frame buffer to skip four RX video frames
before buffering data to memory.
Bit 11 = Use RX VSYNC leading edge for timing and control.
Bit 12 = Use RX HSYNC leading edge for timing and control.

http://www.xilinx.com

Software Implementation

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 18

0x104 R/W Bits 7:0 = TX video clock M value. Used for video clock synthesis. Video_clock = lnk_clk *
M/D.

0x108 R/W Bits 7:0 = TX video clock D value. Used for video clock synthesis. Video_clock = lnk_clk *
M/D.

0x200 R Bits 11:0 = VSYNC counter current count

0x204 R Bits 11:0 = HSYNC counter current count

0x208 R Bits 11:0 = Data enable counter current count

0x300 R/W Bits 15:0 = Frame buffer base address MSB. Base address of the DRAM memory. Set to
0x0 by default.
Usage: base_addr = {Frame buffer base address MSB[15:0], 16’b0}

0x304 R/W Bits 15:0 = Frame offset address MSB. Address offset between frames.
Usage: frame_offset = {Frame offset address MSB[15:0], 16’b0}

0x308 R/W Bits 15:0 = Line offset. Address offset between lines of a frame.

0x30c R Frame buffer status. MIG and frame buffer status.
Bit 0 = p0_mcb_cmd_full
Bit 1 = p0_mcb_wr_underrun
Bit 2 = p2_mcb_cmd_full
Bit 3 = p2_mcb_wr_underrun
Bit 4 = p1_mcb_cmd_full
Bit 5 = p1_mcb_rd_empty
Bit 6 = rxp_fifo_overflow
Bit 7 = p3_mcb_cmd_full
Bit 8 = p3_mcb_rd_empty
Bit 9 = txp_fifo_underflow
Bit 10 = p1_mcb_rd_overflow
Bit 11 = p3_mcb_rd_overflow
Bit 14:12 = frame_sync_count
Bit 15 = calib_done

0x310 R/W Frame buffer BPC. Same as BPC definition on MISC0.

0x31c R/W Memory QWORD count – Number of 64-bit words per line of data, after packing and based
on BPC
For BPC 6, 8, and 10: TX HRES QWORD count = HRES/2
For BPC 12 and 16: TX HRES QWORD count = HRES x 3/4(2)

0x400 (3) R Sink frame CRC for R component, on Pixel-0 interface

0x404 R Sink frame CRC for G component, on Pixel-0 interface

0x408 R Sink frame CRC for B component, on Pixel-0 interface

0x40c R Sink frame CRC for R component, on Pixel-1 interface

0x410 R Sink frame CRC for G component, on Pixel-1 interface

0x414 R Sink frame CRC for B component, on Pixel-1 interface

0x420 R Source frame CRC for R component, on Pixel-0 interface

0x424 R Source frame CRC for G component, on Pixel-0 interface

0x428 R Source frame CRC for B component, on Pixel-0 interface

Table 19: Video Timing Generator Registers (Cont’d)

Register
Address Read/Write Description

http://www.xilinx.com

Setup and Usage

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 19

Setup and
Usage

This reference design is targeted at the Spartan-6 FPGA Consumer Video Kit [Ref 1]. To bring
up the reference design, this setup is needed:

• PC with at least two USB 1.1 or USB 2.0 ports with ISE Design Suite 13.2 and EDK 13.2
installed.

• Spartan-6 FPGA CVK board and power supply

• DisplayPort transmitter (GPU), such as a laptop with DisplayPort output

• DisplayPort receiver device, such as a monitor

• Platform cable USB JTAG programmer

• DisplayPort cable and two USB cables

The setup is shown in Figure 5.

Ensure that all necessary cables and jumpers are set correctly on the board, as shown in
Table 20 and Figure 6.

0x42c R Source frame CRC for R component, on Pixel-1 interface

0x420 R Source frame CRC for G component, on Pixel-1 interface

0x424 R Source frame CRC for B component, on Pixel-1 interface

Notes:
1. Frame synchronization logic adjusts TX frame pointers to adjust rate mismatches between the sink and source cores. If the sink core video

rate is faster than the source core, the logic skips a frame while reading out. If the sink core video rate is slower than the source core, the
logic repeats a frame while reading out.

2. The frame buffer packs pixel data based on BPC to write to a 64-bit DDR2 DRAM interface. For 6, 8, and 10 bits, two pixels are packed into
one 64-bit word of the memory. Thus, the QWORD count is half of the HRES. For 12 and 16 bits, one pixel and one component of the next
pixel are packed into one 64-bit word of the memory. Thus, the QWORD count is 3/4 of the HRES.

3. CRC-8 engines are present at the output of the sink core and input of the source core on a per-pixel interface. Matching the CRC computed
across the frame buffer (on the sink output and source input) guarantees data integrity of the frame buffer logic and external memory.

Table 19: Video Timing Generator Registers (Cont’d)

Register
Address Read/Write Description

X-Ref Target - Figure 5

Figure 5: Hardware Setup

X593_05_072511

http://www.xilinx.com

Setup and Usage

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 20

The USB UART is detected and installed automatically onto a COM port. The device manager
should be checked to see which COM port it has been assigned to. On the host computer, a
terminal application such as HyperTerminal or PuTTy should be opened in serial mode and
connected to the COM port with these settings (for PuTTy):

Baud: 115200

Parity: None

Table 20: CVK Jumper Settings

Jumper Position

JP8 1-2

JP4 1-2

JP5 1-2

JP3 2-3

JP11 1-2

JP12 1-2

JP9 1-2

JP10 1-2

JP2 1-2

JP6 1-2

JP7 1-2

X-Ref Target - Figure 6

Figure 6: CVK 1.0 Board Setup

X593_06_071211

Spartan-6 FPGA CVK Board

USB UART

JTAG

Power

Power
Switch

Software Reset (PSW1)

DisplayPort RX

DisplayPort TX

http://www.xilinx.com

Files

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 21

Pre-verified system bitstream files and executable and linkable format (ELF) files are available
for designs. With these files, the user can bring up the systems and ensure connectivity. In the
reference design files accompanying this application note, the files are located in
XAPP593/s6/CVK1.0/sdk_workspace/hw_platform_0/download.bit.

The working systems and the extended displays are shown in Figure 7.

Files The reference design is organized into five directories:

• doc: Contains documentation relevant to the reference design

• ise_top_level: Contains the top-level ISE tools project

• display_port_sink_policy_maker: Contains the DisplayPort sink policy maker,
which is an EDK system

• design_files: Contains additional design files not generated by the ISE tools or EDK

• sdk_workspace: Contains the SDK workspace files

Figure 8 shows the directory hierarchy and the most important files in the directories.

X-Ref Target - Figure 7

Figure 7: Working System

X593_07_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 22

Generating the
Design

This section discusses how to recreate the system using the ISE design tools, the
CORE Generator tool, EDK, and SDK. The basic steps needed to recreate the project are:

Step 1: Set up the Directory Structure, page 22

Step 2: Create the ISE Tools System, page 23

Step 3: Generate and Integrate the Cores, page 26

Step 4: Create an EDK System, page 29

Add the IP, page 31

Step 5: Generate the Bitstream, page 38

Step 6: Create an SDK Project, page 39

Add the Code, page 41

Step 7: Update the Bitstream, page 42

Step 1: Set up the Directory Structure

Setting up the directory structure is very important to maintain readability of the directories and
to avoid duplicate files. Create a directory structure as shown in Figure 9. Remember the
location of the XAPP folder, because it is referenced multiple times throughout the use of this
application note. After creating the directories, copy the contents of the original
XAPP/design_files directory to the newly created design_files directory.

X-Ref Target - Figure 8

Figure 8: Directory Structure

X593_08_090611

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 23

Step 2: Create the ISE Tools System

All hardware source files are managed by the ISE software project to simplify implementation.
Open the ISE software and create a new project by clicking on File New Project... and enter
the project Name: dport_sink_ref_design.

Set the Location: and Working Directory: to mydirectory/XAPP/ise_top_level, where
mydirectory is the location where the XAPP folder was placed in Step 1: Set up the Directory
Structure. Set the Top-level source type to HDL, as shown in Figure 10.

X-Ref Target - Figure 9

Figure 9: Directory Structure Setup

X-Ref Target - Figure 10

Figure 10: ISE Tools New Project Wizard

X593_09_070911

X593_10_080811

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 24

Set the device and project properties to select the correct device for the CVK board (Figure 11).

• Family: Spartan6

• Product: XC6SLX150T

• Package: FGG676

• Speed: -3

Click Next, then Finish, to create the ISE tools system. The system is now ready to have
source files added to it. The first files to be added are the DisplayPort transmitter and receiver
files. These are created using the CORE Generator tool, as described in the next step.

Set up a new project for the CORE Generator tool to point to the ipcore_dir in the project, as
shown in Figure 12.

X-Ref Target - Figure 11

Figure 11: ISE Tools Project Settings

X593_11_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 25

Set up the project options for the CORE Generator tool—the same project options as the ones
for the ISE software—to generate the core (Figure 13).

X-Ref Target - Figure 12

Figure 12: CORE Generator Tool - New Project Setup

X-Ref Target - Figure 13

Figure 13: CORE Generator Tool - New Project Options

X593_12_071511

X593_13_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 26

Step 3: Generate and Integrate the Cores

Open the CORE Generator tool from the ISE tools by clicking on Tools CORE Generator.
When the CORE Generator tool opens, navigate to the DisplayPort version 2.3 found in the
Standard Bus Interfaces DisplayPort directory, and double-click the entry.

Note: If the core is not available, a license might be required. Information on obtaining a license can be
found at http://www.xilinx.com/products/ipcenter/ipaccess_fee.htm.

To generate the transmitter core (Figure 14):

1. Enter the Component Name as displayport_v2_3.

2. Select Transmit Source Core from the data flow direction radio buttons.

3. Set Number of Lanes to 4.

4. Click Generate.
X-Ref Target - Figure 14

Figure 14: DisplayPort TX LogiCORE IP Generation

X593_14_070911

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/ipaccess_fee.htm

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 27

To generate the RX core (Figure 15):

1. Enter the Component Name as displayport_v2_3_rx.

2. Select Receive Sink Core from the data flow direction radio buttons.

3. Set Number of Lanes to 4.

4. Click Generate.

5. After the RX core is generated, close the CORE Generator software.

Note: AXI address information in the DisplayPort GUI need not be updated because the system memory
map address is assigned while building the EDK system.

After the core is generated, it can be integrated into the ISE tools system. The generated core
is located in:

mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx

The example design provided with the LogiCORE IP is not used. Instead, it is replaced by the
example design provided at XAPP/design_files/displayport_txrx_exdes.v.

The new example design contains the MicroBlaze processor-based policy maker from this
application note. The design files also provide the MIG core. The user can decide to regenerate
the MIG core from the CORE Generator tool using the similar flow. The frame buffer logic, CRC
engines, and clocking modules are also sourced from the design files.

X-Ref Target - Figure 15

Figure 15: DisplayPort RX LogiCORE IP Generation

X593_15_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 28

Right-click in the Hierarchy window within the ISE software and select Add Source. Add these
sources to the project:

mydirectory/XAPP/design_files/clk_wiz_200m.v
mydirectory/XAPP/design_files/dcmspi.v
mydirectory/XAPP/design_files/displayport_txrx_exdes.v
mydirectory/XAPP/design_files/displayport_txrx.ucf
mydirectory/XAPP/design_files/vid_clkgen.v
mydirectory/XAPP/design_files/patgen/regs.v
mydirectory/XAPP/design_files/patgen/timing.v
mydirectory/XAPP/design_files/patgen/video_pat_gen.v
mydirectory/XAPP/design_files/frame_buffer/crc_16_comp.v
mydirectory/XAPP/design_files/frame_buffer/frame_buf_top.v
mydirectory/XAPP/design_files/frame_buffer/rx_video_pack.v
mydirectory/XAPP/design_files/frame_buffer/tx_dfifo.v
mydirectory/XAPP/design_files/frame_buffer/tx_video_unpack.v
mydirectory/XAPP/design_files/frame_buffer/vid_crc_16.v
mydirectory/XAPP/design_files/frame_buffer/video_to_mc_bridge.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/infrastructure.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/memc_wrapper.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mig_top_200m.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/iodrp_controller.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/iodrp_mcb_controller.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/mcb_raw_wrapper.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/mcb_soft_calibration_top.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/mcb_soft_calibration.v
mydirectory/XAPP/design_files/frame_buffer/mig_top_200m/user_design/rtl/mcb_controller/mcb_ui_top.v
mydirectory/XAPP/design_files/frame_buffer/mem/line_fifo.v
mydirectory/XAPP/design_files/frame_buffer/mem/line_fifo.ngc
mydirectory/XAPP/design_files/frame_buffer/mem/line_fifo_tx.v
mydirectory/XAPP/design_files/frame_buffer/mem/line_fifo_tx.ngc
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/dport_txrx_phy.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/dport_txrx.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/s6_gt_tile.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/s6_gt_wrapper.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/displayport_v2_3_tx.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/dport_txlink_top.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/dport_txlink_top.ngc
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/dport_rxlink_top.ngc
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/source/dport_rxlink_top.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/example_design/iic_edid_rom.vhd
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/example_design/iic_rom.vhd

The TXRX PHY module (dport_txrx_phy.v) requires define files from both TX and RX
core. The user can copy these files to ise_top_level to resolve define values. The define
files are:

mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3/source/dport_tx_defs.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/source/dport_rx_defs.v
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/source/dport_rx_dpcd_defs.v

At this stage, the project should appear as shown in Figure 16. All necessary sources, except
the EDK subsystem, have been added to the project.

Note: The sink device EDID structure advertises 1600x1200 as the maximum supported resolution.

The EDID structure present in
mydirectory/XAPP/ise_top_level/ipcore_dir/displayport_v2_3_rx/example
_design/iic_edid_rom.vhd can be modified to change the maximum supported
resolution. For more details on the EDID data structure, refer to the VESA Enhanced EDID
Standard [Ref 7].

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 29

Step 4: Create an EDK System

To add an EDK system to the ISE tools project, right-click in the Hierarchy window within the
ISE software and select New Source. Select Embedded Processor as the source type. Set
the File name to display_port_sink_policy_maker and the Location to mydirectory/XAPP.
Ensure the Add to project box is checked, where mydirectory is the directory where the XAPP
folder was placed in Step 1: Set up the Directory Structure. Select Next, then Finish. This
launches Xilinx Platform Studio (XPS). If prompted to create a system using Base System
Builder, select No (Figure 17).

X-Ref Target - Figure 16

Figure 16: Partial ISE Tools System

X593_16_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 30

XPS should now be active and an empty system should be shown. Open the IP Catalog as
shown in Figure 18. From here, all required IP is added to the system.

X-Ref Target - Figure 17

Figure 17: ISE Tools New Source Wizard for EDK Insertion

X593_17_071511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 31

Project Local pcores should be empty, and the AXI2APB bridge and AXI external slave
connector IPs must be added.

Copy the axi_apb_bridge_v1_00_a and axi_ext_slave_conn_v1_00_a folders from
the reference design files in XAPP/display_port_sink_policy_maker/pcores/ to the
current design mydirectory/XAPP/display_port_sink_policy_maker/pcores.

After the directory is copied, click Project Rescan User Repositories to refresh the IP
Catalog. If asked to create a project using BSB wizard, select No.

Add the IP

Before adding the IP, click the System Assembly View to see when the IP is added. Next, add
cores listed in Table 21 to the system by locating them in the IP Catalog and double-clicking
them. In the System Assembly View, click the IP name and rename each one to the names
given in Table 21.

X-Ref Target - Figure 18

Figure 18: EDK IP Catalog Selection

X593_18_071511

Table 21: EDK Required IP

IP Location Version Name

Processor MicroBlaze 8.20.a microblaze_1

Bus and Bridge AXI Interconnect 1.03.a axi4lite_0

Bus and Bridge Local Memory Bus (LMB) 1.0 2.00.b ilmb

Bus and Bridge Local Memory Bus (LMB) 1.0 2.00.b dlmb

Memory and Memory Controller LMB BRAM Controller 3.00.b ilmb_cntlr

Memory and Memory Controller LMB BRAM Controller 3.00.b dlmb_cntlr

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 32

Connect the Buses

Navigate to the Bus Interfaces tab of the System Assembly View, and connect all of the AXI
bus connections, LMB bus connections, and DEBUG bus connections, as shown in Figure 19.
This can be done by clicking the circles, squares, and triangles on the left side of the system
assembly view or by using the pull-downs in the Bus Name column. It might be useful to click
the + located next to the Bus Interfaces tab to see the bus connectivity more clearly.

Note: For more details on using EDK, refer to the EDK 13.2 Documentation [Ref 5].

After all of the buses are connected, click the Addresses tab and click Generate Addresses.

Memory and Memory Controller Block Ram (BRAM) Block 1.00.a lmb_bram

Communication Low-Speed AXI UART (lite) 1.02.a axi_uartlite_0

Debug MicroBlaze Debug Module (MDM) 2.00.b debug_module

Clock, Reset and Interrupt Processor System Reset Module 3.00.a proc_sys_reset_0

DMA and Timer AXI Timer/ Counter 1.02.a axi_timer_0

Project Local pcores USER AXI_APB_BRIDGE 1.00.a axi_apb_bridge_0

Project Local pcores USER AXI EXTERNAL SLAVE CONNECTOR 1.00.a axi_ext_slave_conn_0

Project Local pcores USER AXI EXTERNAL SLAVE CONNECTOR 1.00.a axi_ext_slave_conn_1

Table 21: EDK Required IP (Cont’d)

IP Location Version Name

X-Ref Target - Figure 19

Figure 19: EDK Bus Connectivity

X593_19_080811

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 33

Note: Ensure that dlmb_cntlr and ilmb_cntlr have a base address of 0x00000000 and a size of
64K.

Now that the bus connections are made, each IP needs to be configured. Navigate to the Bus
Interfaces tab to begin configuring IP. Many of the IPs in the system are pre-configured or
automatically configured. However, the MicroBlaze processor and the UART Lite IPs need to be
configured for this system.

MicroBlaze Processor Configuration

Double-click the microblaze_1 IP, select Minimum Area, and click OK, as shown in Figure 20.
Select the Enable Debug option, and on Page 3 of the MicroBlaze wizard, select the AXI bus
interface option.

RS-232 UART Configuration

Double-click on the axi_uartlite_0 IP, select the User tab, and set the UART Lite Baud Rate to
115200. Set Use Parity to FALSE, and click OK as shown in Figure 21.

X-Ref Target - Figure 20

Figure 20: MicroBlaze Processor Configuration

X593_20_080811

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 34

Debug Module Configuration

Double-click the debug_module IP, select the UART configuration, and deselect the Enable
JTAG UART checkbox.

AXI External Slave Connector Module Configuration

Double-click the axi_ext_slave_conn0 IP and select AXILITE as the C_S_AXI_PROTOCOL.
Configure C_S_AXI_RNG00_BASEADDR and C_S_AXI_RNG00_HIGHADDR to
0xC3A00000 and 0xC3A0FFFF, respectively, to create a 64K memory map range for the slave
connected to the extender.

Double-click the axi_ext_slave_conn1 IP and select AXILITE as the C_S_AXI_PROTOCOL.
Configure C_S_AXI_RNG00_BASEADDR and C_S_AXI_RNG00_HIGHADDR to
0xC4A00000 and 0xC4A0FFFF, respectively, to create a 64K memory map range for the slave
connected to the extender.

Port Connections

Now that the majority of the system is internally connected and configured, the external
connections need to be added. To do this, open the .mhs file found on the Project tab, and add
the port declarations shown in Figure 22 and Figure 23 on the line following the PARAMETER
VERSION. Save the file, return to the System Assembly View, and click on the Ports tab.

X-Ref Target - Figure 21

Figure 21: RS-232 UART Configuration

X593_21_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 35

X-Ref Target - Figure 22

Figure 22: EDK External Port Connections

X593_22_071511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 36

On the Ports tab, expand the External Ports to see the newly added ports. The sys_rst_pin
port has a reset polarity of 1 and the SYSTEM_CLOCK port has a frequency of 40 MHz. If the
reset polarity or clock frequency change, these parameters need to be changed to reflect that.

After all of the connections are made, the .mhs file should appear very similar to the .mhs
included in the reference design (XAPP/display_port_sink_policy_maker/
display_port_sink_policy_maker.mhs). The XPS portion is now complete and ready
to be integrated into the top-level design.

XPS can now be closed, and work can resume in the ISE software. When returning to the
ISE software, the display_port_sink_policy_maker_inst should be populated with
the EDK project as shown in Figure 24.

X-Ref Target - Figure 23

Figure 23: EDK External Port Connections (Continued)

X593_23_071511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 37

X-Ref Target - Figure 24

Figure 24: Complete ISE Tools System

X593_24_072511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 38

Step 5: Generate the Bitstream

With the project now containing all required source files, the bitstream can be generated, and
the platform can be exported to SDK. The DisplayPort cores are generated as NGC files, and
these are read into the ISE software as part of the ADD file (Figure 25).

The design is now ready to be built. Double-click on Generate Programming File. The design
should run through synthesis, implementation, and bitstream generation. The base hardware
system is now built, but it contains no software for the MicroBlaze processor. To add the
software to the MicroBlaze processor, an SDK project must be created. First, however, the
hardware design needs to be exported so that SDK has a reference system.

From the ISE tools project navigator, select display_port_sink_policy_maker_inst and
double click Export Hardware Design to SDK with Bitstream from the bottom-left pane, as
shown in Figure 26.

X-Ref Target - Figure 25

Figure 25: Implementation Properties

X593_25_071511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 39

Double-click Export Hardware Design to SDK. This creates an XML file in
mydirectory/display_port_sink_policy_maker/SDK/SDK_Export/hw/ named
display_port_sink_policy_maker.xml. This XML file represents the EDK system and
is used by SDK to create a hardware platform.

Step 6: Create an SDK Project

Open SDK, and set the Workspace to mydirectory/XAPP/sdk_workspace.

In SDK, three components are needed to create a software project: a hardware specification, a
board support package, and a C or C++ project. The three components are created as
described below.

X-Ref Target - Figure 26

Figure 26: Export Hardware Design to SDK

X593_26_080811

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 40

Xilinx Hardware Platform Specification

To create the hardware specification:

1. Click File New Xilinx Hardware Platform Specification.

2. Set the Project name to hw_platform_0.

3. Set the target hardware specification to
mydirectory/XAPP/display_port_sink_policy_maker/SDK/SDK_Export/hw/
display_port_sink_policy_maker.xml.

4. Click Finish.

Xilinx Board Support Package

To create the board support package:

1. Click File New Xilinx Board Support Package.

2. Set the project name to standalone_bsp_0.

3. Set the hardware platform to hw_platform_0.

4. Set the board support package OS to standalone.

5. Click Finish.

6. In the Board Support Package settings, ensure that stdin and stdout are set to
axi_uartlite_0, as shown Figure 27.

7. Click OK.

Xilinx C Project

To create the C Project:

1. Click File New Xilinx C Project.

2. Set the project name to dp_sink_policy_maker_0.

3. Set the project template to Empty Application.

4. Click Next.

X-Ref Target - Figure 27

Figure 27: Board Support Package Settings

X593_27_070911

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 41

5. Click the Target an existing Board Support Package radio button and select
standalone_bsp_0.

6. Click Finish.

Add the Code

SDK should now have three projects in the project explorer, as shown in Figure 28.

Using a console or folder browser, copy the source files (*.c and *.h) from the reference
design folder XAPP/sdk_workspace/dp_sink_policy_maker_0/src to
mydirectory/XAPP/sdk_workspace/dp_sink_policy_maker_0/src.

Go back to SDK and refresh the dp_sink_policy_maker_0/src folder by clicking on it in
the Project Explorer window and pressing F5. The source should automatically compile and
place dp_sink_policy_maker_0.elf in the
mydirectory/XAPP/sdk_workspace/dp_sink_policy_maker_0/Debug directory.

X-Ref Target - Figure 28

Figure 28: SDK Project Explorer

X593_28_071511

http://www.xilinx.com

Generating the Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 42

Step 7: Update the Bitstream

There are several ways to update the bitstream with processor data. The method used for this
application note is a post-processing step in SDK.

From the Project Explorer in SDK, right-click the dp_sink_policy_maker_0 project, and select
C/C++ Build Settings. Next, click the Build Steps tab and, as shown in Figure 29, set the
Command: in the Post-build steps to:

data2mem -bm ../../hw_platform_0/system.bmm -bt
../../hw_platform_0/system.bit -bd dp_sink_policy_maker_0.elf -o b ../../
hw_platform_0/download.bit

These steps create a new download.bit file in the
mydirectory/XAPP/sdk_workspace/hw_platform_0 directory every time the software
is rebuilt. The download.bit file can now be downloaded to the Spartan-6 FPGA on the CVK
board. Refer to Setup and Usage, page 19 for more information about using the reference
design.

Reference CRC Values

Table 22 and Table 23 list frame reference CRC values for single pixel and dual pixel modes,
respectively.

X-Ref Target - Figure 29

Figure 29: SDK Post-Build Steps

X593_29_070911

Table 22: Single Pixel Mode Reference CRC Values

Resolution BPC CRC-Red CRC-Green CRC-Blue

640 x 480 6 0x5792 0xCB6D 0x4CD

640 x 480 8 0xFD7 0x83E 0x7C2A

640 x 480 10 0x1DA0 0x8BAC 0xF83D

1024 x 768 6 0xD2BE 0xC858 0x767C

1024 x 768 8 0xAFF5 0x68A4 0x0734

1024 x 768 10 0xD9DF 0x7BB7 0x8C67

1280 x 768 6 0xC918 0x99F0 0x3108

1280 x 768 8 0xc7AE 0x1532 0x29BC

1280 x 768 10 0x5BCB 0xa9ED 0x8F5E

1280 x 1024 6 0xA16D 0xC633 0x7E77

1280 x 1024 8 0xD0A7 0x73B0 0x0699

http://www.xilinx.com

Conclusion

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 43

Conclusion The reference design accompanying this application note guides the user to create a
DisplayPort sink system using the ISE software, EDK, and SDK tools. Pre-verified system files
provided with the application note help to ensure system connectivity and fast system bring-up.
Detailed descriptions of the policy maker software are provided to enable the user with various
features of the DisplayPort designs.

Reference
Design

The reference design files for this application note can be downloaded at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=174274

The checklist in Table 24 indicates the tool flow and verification procedures used for the
reference design.

1280 x 1024 10 0xA6FF 0x314C 0x5E19

1600 x 1200 6 0xD71D 0xBFAD 0x186F

1600 x 1200 8 0x1D5F 0xC4E5 0xEC7C

1600 x 1200 10 0xA090 0xEE03 0xDDB4

Table 22: Single Pixel Mode Reference CRC Values (Cont’d)

Resolution BPC CRC-Red CRC-Green CRC-Blue

Table 23: Dual Pixel Mode Reference CRC Values

Resolution BPC CRC-Red 0 CRC-Green 0 CRC-Blue 0 CRC-Red1 CRC-Green1 CRC-Blue 1

640 x 480 6 0x83E3 0x420A 0xD6D9 0xBD9A 0xC852 0xDF4F

640 x 480 8 0x432F 0xC2BF 0x2C9D 0x2CB0 0xE029 0xEEFA

640 x 480 10 0x667D 0x7453 0x3716 0xF425 0x7BCC 0x2F0E

1024 x 768 6 0x49D5 0xFFD7 0xC928 0xC006 0x1788 0xB136

1024 x 768 8 0x6BA2 0xDF31 0x290B 0xE9D5 0x4525 0xF70E

1024 x 768 10 0xBF1a 0xBFD0 0x3FF0 0x71C9 0x16E5 0x0797

1280 x 768 6 0x185C 0xEAC2 0xF04E 0x7676 0xFD9D 0x2255

1280 x 768 8 0x5F4B 0xD585 0x0E4A 0x84C3 0x7051 0x9ACF

1280 x 768 10 0x5ABB 0xD9C1 0x1235 0x42A9 0x3E86 0xB3DA

1280 x 1024 6 0x08F4 0xA9B2 0x52B6 0x673B 0xBAB6 0x9CED

1280 x 1024 8 0xE190 0x78CC 0xCB76 0x5A60 0x7C0D 0x58E3

1280 x 1024 10 0xAD68 0x7BC3 0x25AE 0xD124 0x824E 0x0BC4

1600 x 1200 6 0x060F 0x8513 0x3B62 0x24C0 0x528F 0x35C6

1600 x 1200 8 0x9330 0xDAF8 0x504D 0x3B80 0xEF1F 0x53E4

1600 x 1200 10 0x3EEC 0xBE96 0xEF70 0x0C41 0xA65C 0xDFEF

Table 24: Reference Design Matrix

Parameter Description

General

Developer Name Xilinx

Target Devices (Stepping Level, ES, Production, Speed Grades) Spartan-6 FPGA
(XC6SLX150T-FGG676-3)

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=174274

Reference Design

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 44

Reference Design Footprint

Table 25 lists the resource utilization of the default Policy Maker reference design. The number
of block RAMs used is for a more full featured, user-driven, console-based policy maker.
Implementations with fewer features are possible with less block RAM utilization.

Source Code Provided? Yes

Source Code Format Verilog, C

Design Uses Code or IP from Existing Reference Design,
Application Note, 3rd party, or CORE Generator™ Software?

Yes
DisplayPort LogiCORE IP,
v2.3 with AXI

Simulation

Functional Simulation Performed? Yes

Timing Simulation Performed? No

Testbench Provided for Functional and Timing Simulations? No

Testbench Format Verilog

Simulator Software and Version ModelSim 6.6d

SPICE/IBIS Simulations? No

Implementation

Synthesis Software Tools and Version ISE software, v13.2

Implementation Software Tools and Version EDK 13.2
SDK 13.2

Static Timing Analysis Performed? Yes

Hardware Verification

Hardware Verified? Yes

Hardware Platform Used for Verification Spartan-6 FPGA Consumer
Video Kit

Table 25: Reference Design Footprint

IP LUTs Flip-Flops Block RAMs

axi_apb_bridge_0_wrapper 144 141 0

axi_timer_0_wrapper 217 271 0

axi_uartlite_0_wrapper 85 103 0

axi4lite_0_wrapper 500 602 0

proc_sys_reset_0_wrapper 69 55 0

lmb_bram_wrapper 0 0 32

ilmb_cntlr_wrapper 2 6 0

dlmb_cntlr_wrapper 2 6 0

dlmb_wrapper 1 1 0

ilmb_wrapper 1 1 0

debug_module_wrapper 89 80 0

Table 24: Reference Design Matrix (Cont’d)

Parameter Description

http://www.xilinx.com

References

XAPP593 (v1.0) September 16, 2011 www.xilinx.com 45

References 1. TED Spartan-6 FPGA Consumer Video Kit 2.0
http://www.xilinx.com/products/devkits/TB-6S-CVK.htm

2. AMBA Protocol Specifications Document Set
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html

3. UG388, Spartan-6 FPGA Memory Controller User Guide

4. VESA DisplayPort Standard v1.1a
http://www.vesa.org

5. EDK 13.2 Documentation
http://www.xilinx.com/support/documentation/dt_edk_edk13-2.htm

6. UG767, LogiCORE IP DispayPort v2.3 User Guide

7. VESA Enhanced EDID Standard (Release A, Revision 2 - September 25, 2006)
http://www.vesa.org

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

microblaze_1_wrapper 1,239 1,167 0

display_port_sink_policy_maker 2,349 2,433 32

Reference design including DP core, frame buffer,
MIG core, and associated logic

21,385 13,536 85

Table 25: Reference Design Footprint (Cont’d)

IP LUTs Flip-Flops Block RAMs

 Date Version Description of Revisions

09/16/11 1.0 Initial Xilinx release.

http://www.xilinx.com/products/devkits/TB-6S-CVK.htm
http://www.xilinx.com/support/documentation/ip_documentation/displayport/v2_3/ug767_displayport.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/displayport/v2_3/ug767_displayport.pdf
http://www.xilinx.com/support/documentation/dt_edk_edk13-2.htm
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://www.vesa.org
http://www.vesa.org

	DisplayPort Sink Reference Design
	Summary
	Introduction
	Hardware Implementation
	Clocking
	Frame Buffer
	Frame CRC

	Software Implementation
	Setup and Usage
	Files
	Generating the Design
	Step 1: Set up the Directory Structure
	Step 2: Create the ISE Tools System
	Step 3: Generate and Integrate the Cores
	Step 4: Create an EDK System
	Step 5: Generate the Bitstream
	Step 6: Create an SDK Project
	Step 7: Update the Bitstream
	Reference CRC Values

	Conclusion
	Reference Design
	Reference Design Footprint

	References
	Revision History
	Notice of Disclaimer

